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Abstract. For large masses, the two heavy neutral Higgs bosons are nearly degenerate in many 2-Higgs
doublet models, and particularly in supersymmetric models. In such a scenario the mixing between the states
can be very large if the theory is CP -noninvariant. We analyze the formalism describing this configuration,
and we point to some interesting experimental consequences.

1 Introduction

At least two iso-doublet scalar fields must be introduced
in supersymmetric theories to achieve a consistent for-
mulation of the Higgs sector. Supersymmetric theories in
minimal form are specific realizations of general scenar-
ios which include two doublets in the Higgs sector. After
three fields are absorbed to generate the masses of the
electroweak gauge bosons, five fields are left that give rise
to physical particles. In CP -invariant theories, besides the
charged states, two of the three neutral states are CP -even,
while the third is CP -odd. In CP -noninvariant theories
the three neutral states however mix to form a triplet with
even and odd components in the wave-functions under CP -
transformations [1–5]. As expected from general quantum
mechanical rules, the mixing can become very large if the
states are nearly mass-degenerate. This situation is natu-
rally realized for supersymmetric theories in the decoupling
limit in which two of the neutral states are heavy.

In this note we analyze H/A mixing in a simple quantum
mechanical formalism that reveals the underlying structure
in a clear and transparentway.H andA represent twoheavy
nearly mass-degenerate fields. After the discussion of the
general CP -noninvariant 2-Higgs doublet model (2HDM),
we adopt the minimal supersymmetric standard model,
though extended to a CP -noninvariant version [MSSM-
CP], as a well-motivated example for the analysis.

2 Complex mass matrix

The most general form of the self-interaction of 2-Higgs
doublets in a CP -noninvariant theory is described by the
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where Φ1,2 denote two complex Y = 1, SU(2)L iso-doublet
scalar fields. The coefficients are in general all non-zero.
The parameters m2

12, λ5,6,7 can be complex, incorporating
the CP -noninvariant elements in the interactions:

m2
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12 + im2I
12, λ5,6,7 = λR

5,6,7 + iλI
5,6,7 . (2)

Assuming the scalar fields to develop non-zero vacuum
expectation values to break the electroweak symmetries
but leaving U(1)EM invariant, the vacuum fields can be
defined as
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Without loss of generality, the two vacuum expectation
values vi [i = 1, 2] can be chosen real and positive after an
appropriate global U(1) phase rotation; the parameters of
the (effective) potential (1) are defined after this rotation.
As usual,
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2 = 1/

√√
2GF and tanβ = v2/v1, (4)
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with v ≈ 246 GeV. The abbreviations tβ = tanβ, cβ =
cos β, s2β = sin 2β etc. will be used from now on.

The conditions for minimizing the potential (1) relate
the parameters m2

ii to the real part of m2
12, λk, v and tβ :
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5 , and the imag-
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It will prove convenient later to exchange the real part
of m2

12 for the auxiliary parameter M2
A, or in units of v,
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This parameterwill turn out to be one of the key parameters
in the system.

In a first step the Φ1,2 system is rotated to the Higgs
basis Φa,b,

Φa = cos β Φ1 + sinβ Φ2,

Φb = − sin β Φ1 + cos β Φ2, (8)

which is built up by the two iso-spinors:
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The three fields G±,0 can be identified as the would-be
Goldstone bosons, while H±, Ha,b and A give rise to phys-
ical Higgs bosons. The charged Higgs mass MH± and the
real mass matrix M2

0R of neutral Higgs fields in the basis
of Ha, Hb, A can easily be derived from the potential after
the rotations:
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abbreviated for easier reading and to be complemented
symmetrically. The notation for the real parts of the cou-
plings,
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are introduced for the imaginary parts of the couplings [7].
In a CP -invariant theory all couplings are real and the

off-diagonal elements λp, λ̂p vanish. In this case the neutral
mass matrix separates into the standard CP -even 2 × 2
part and the standard [stand-alone] CP -odd part.1 The
parameter MA is then identified as the mass of the CP -
odd Higgs boson A. The 2×2 submatrix of the Ha and Hb

system can be diagonalized, leading to the two CP -even
neutral mass eigenstates h, H; in terms of Ha, Hb:

H = cos γ Ha − sin γ Hb,

h = sin γ Ha + cos γ Hb, (14)

with γ = β − α; the angle α is the conventional CP -even
neutral Higgs boson mixing angle in the [Φ1, Φ2] basis of
the CP -invariant 2HDM. The diagonalization of the mass
matrix leads to the relation

tan 2γ =
2λ̂

λA − m2
A

, (15)

with γ ∈ [0, π].
However, also in the general CP -noninvariant case, the

fields ha = h, H, A serve as a useful basis, giving rise to
the general final form of the real part of the neutral mass
matrix M2

R,

M2
R = v2 (16)

×
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which is hermitian and symmetric by CPT invariance.

1 The Goldstone bosons G±,0 (carrying zero mass) decouple
from the physical states.
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This hermitian part (16) of the mass matrix is supple-
mented by the anti-hermitian part −iMΓ incorporating
the decay matrix. This matrix includes the widths of the
states ha = h, H, A in the diagonal elements as well as the
transition elements within any combination of pairs. All
these elements (MΓ )AB

ab are built up by loops of the fields
(AB) in the self-energy matrix 〈hahb〉 of the Higgs fields.

In general, the light Higgs boson, the fermions and
electroweak gauge bosons, and in supersymmetric theories,
gauginos, higgsinos and scalar states may contribute to the
loops in the propagator matrix. In the decoupling limit
explored later, the couplings of the heavy Higgs bosons
to gauge bosons and their supersymmetric partners are
suppressed. Assuming all supersymmetric particles to be
suppressed either by couplings or by phase space in MΓ ,
we will consider only loops built up by the light Higgs
boson and the top quark as characteristic examples; loops
from other (s)particles could be treated in the same way
of course.

(i) Light scalar Higgs h states
While the Hhh coupling is CP -conserving, the Ahh cou-
pling is CP -violating. Expressed in terms of the λ param-
eters in the potential they are given as
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The trigonometric functions sα and cα can be re-expressed
by the sine and cosine of β and γ after inserting α = β −γ.

The imaginary part of the light Higgs loop is given for
CP -conserving and CP -violating transitions by

(MΓ )hh
HH/AA =

βh

32π
g2

Hhh/Ahh,

(MΓ )hh
HA/AH =

βh

32π
gHhhgAhh, (18)

where βh denotes the velocity of the light Higgs boson h
in the decays H/A → hh [with the heavy Higgs bosons
assumed to be mass-degenerate].

(ii) Top-quark states
The Htt and Att couplings are defined by the Lagrangian

Lt = Ht̄ [sH + iγ5pH ] t + At̄ [sA + iγ5pA] t, (19)

which includes the CP -conserving couplings2 sH , pA and
the CP -violating couplings pH , sA. For the top quark loop

2 In the type-II class of CP -conserving 2-Higgs doublet mod-
els, to which the minimal supersymmetric extension of the stan-
dard model belongs, the two couplings sH , pA approach equal
values, � cot β mt/v, for large Higgs masses.

we find
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8π
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in the same notation as before. The transitions include
incoherent and coherent mixtures of scalar and pseudo-
scalar couplings,

gtt
HH = β2

t s2
H + p2

H ,

gtt
AA = β2

t s2
A + p2

A,

gtt
HA = gtt

AH = β2
t sHsA + pHpA, (21)

where βt denotes the velocity of the top quarks in the Higgs
rest frame.

These loops also contribute to the real part of the mass
matrix. They either renormalize the λ parameters of the
Higgs potential or they generate such parameters if not
present yet at the tree level. In the first case they do not
modify the generic form of the mass matrix, and the set
of renormalized λ’s are interpreted as free parameters to
be determined experimentally. The same procedure also
applies to supersymmetric theories in which some of the
λ’s are generated radiatively by stop loops, introducing
CP -violation into the Higgs sector through bilinear and
trilinear interactions in the superpotential, a case discussed
later in detail.

Including these elements, the final complex mass matrix
can be written in the Weisskopf–Wigner form [8]

M2 = M2
R − iM Γ. (22)

which will be diagonalized in the next section.

Decoupling limit

The decoupling limit [6] is defined by the inequality

M2
A � |λi| v2 (23)

with |λi| � O(1) or O(g2, g′2), g2 and g′2 denoting the
electroweak gauge couplings. The limit is realized in many
supersymmetric models, particularly in SUGRA models
with M2

A � v2. It is well known that in the decoupling
limit the heavy states H and A, as well as H±, are nearly
mass-degenerate. This feature is crucial for large mixing
effects between the CP -odd and CP -even Higgs bosons, A
and H, analyzed in this report.

As the trigonometric sin/cos functions of γ = β − α
approach the following values in the decoupling limit:

cγ � λ̂/m2
A → 0, sγ → 1 (24)

up to second order in 1/m2
A, the real part of the complex

mass matrix acquires the simple form

M2
R � v2

 λ 0 −λ̂p

0 m2
A + λ − λA λp

−λ̂p λp m2
A

 (25)



558 S.Y. Choi et al.: H/A Higgs mixing in CP -noninvariant supersymmetric theories

in the leading order ∼ m2
A and next-to-leading order ∼ 1.

The Hhh and Ahh couplings are simplified in the decou-
pling limit and they can be written in the condensed form:

gHhh/v → − 3
2

s2β

(
c2
βλ1 − s2

βλ2 − c2βλ345
)

+3
(
cβc3βλR

6 + sβs3βλR
7
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→ −3λR
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2
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5+3

(
c2
βλI

6 + s2
βλI

7
)

→ +3λI
7, (26)

since in this limit we can set cα = sβ and sα = −cβ . The
couplings simplify further for moderately large tanβ and
they are determined in this range by the coefficient λ7 alone
as demonstrated above.

3 Physical masses and states

Following the steps in the appendix of [9], it is easy to
prove mathematically, that mixing between the light Higgs
state and the heavy Higgs states is small, but large between
the two nearly mass-degenerate states. Mathematically the
mixing effects are of the order of the off-diagonal elements
in the mass matrix normalized to the difference of the (com-
plex) mass-squared eigenvalues. On quite general grounds,
this is a straightforward consequence of the uncertainty
principle. We can therefore restrict ourselves to the dis-
cussion of the mass-degenerate 2 × 2 system of the heavy
Higgs bosons H, A, allowing us to reduce the calculational
effort to a minimum.

If the mass differences become small, the mixing of the
states is strongly affected by the widths of the states and the
complexWeisskopf–WignermassmatrixM2 = M2

R−iMΓ
must be considered in total, not only the real part. This is
well known in the literature from resonance mixing [10] and
has recently also been recognized for the Higgs sector [11].

By CPT invariance, the complex mass matrix M2 is
symmetric. Adopting the notation in [10] for the H/A sub-
matrix which is separated in the lower right corner of (25),

M2
HA =

(
M2

H − iMHΓH ∆2
HA

∆2
HA M2

A − iMAΓA

)
, (27)

the matrix can be diagonalized,

M2
HiHj

=

(
M2

H2
− iMH2ΓH2 0

0 M2
H3

− iMH3ΓH3

)
(28)

through a rotation by a complex mixing angle:
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= CM2
HAC−1, C =

(
cos θ sin θ
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)
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X =
1
2

tan 2θ =
∆2

HA

M2
H − M2

A − i [MHΓH − MAΓA]
. (30)

A non-vanishing (complex) mixing parameter ∆2
HA 
= 0

requires CP -violating transitions between H and A either
in the real mass matrix, λp 
= 0, or in the decay mass
matrix, ΓHA 
= 0, [or both]. When, in the decoupling limit,
the masses MH and MA are nearly degenerate, the mixing
phenomena are strongly affected by the form of the decay
matrix MΓ . In this limit the difference of the Higgs widths
determines the modulus as well as the phase of the mixing
parameter X = 1

2 tan 2θ. Though the partial widths are
nearly equal for decays of the two Higgs bosons to top
pairs, only the H channel may be open for decays to light
Higgs boson pairs. Since the difference of the widths enters
through the denominator in X, the modulus |X| becomes
large for small differences, and small widths in general.

The mixing shifts the Higgs masses and widths in a
characteristic pattern [10]. The two complex mass values
after and before diagonalization are related by the complex
mixing angle θ:[

M2
H3

−iMH3ΓH3

]∓[M2
H2

−iMH2ΓH2

]
(31)

=
{[

M2
A−iMAΓA

]∓[M2
H −iMHΓH

]}{×√
1 + 4X2 ,

× 1 .

As expected from rotational transformations, which leave
the trace of matrices invariant, the complex eigenvalues
split in exactly opposite directions when the mixing is
switched on.3

The individual shifts of masses and widths can eas-
ily be obtained by separating real and imaginary parts in
the relations:[

M2
H2

−iMH2ΓH2

]−[M2
H −iMHΓH

]
= −{[M2

H3
−iMH3ΓH3

]−[M2
A−iMAΓA

]}
,

= −{[M2
A−iMAΓA

]−[M2
H −iMHΓH

]}
× 1

2

[√
1 + 4X2 − 1

]
. (32)

If the mixing parameter is small and real, the gap between
the states increases quadratically with the size of the mix-
ing; if the mixing is large, linearly.

The eigenstates of the complex, non-hermitian matrix
M2

HA of (27) are no longer orthogonal, but instead

|H2〉 = cos θ |H〉 + sin θ |A〉,
|H3〉 = − sin θ |H〉 + cos θ |A〉,
〈H̃2| = cos θ 〈H| + sin θ 〈A|,
〈H̃3| = − sin θ 〈H| + cos θ 〈A| . (33)

Correspondingly, the final state F in heavy Higgs formation
from the initial state I is generated with the transition am-

3 At the very end of the analysis onemay order theHiggs states
according to ascending masses in CP -noninvariant theories.
However, at intermediate steps the notation used here proves
more transparent.
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plitude4

〈F |H|I〉 =
∑

i=2,3

〈F |Hi〉 1
s − M2

Hi
+ iMHi

ΓHi

〈H̃i|I〉. (34)

3.1 An illustrative example

We illustrate the mixing mechanism in a simple toy model
in which MA = 0.5 TeV, tan β = 5 and all |λi| = 0.4 [i.e.
roughly equal to the weak SU(2) gauge coupling squared],
while a common phase φ of all the complex parameters
λ5,6,7 is varied from 0 through π to 2π.5 The scalar and
pseudoscalar couplings of the top quark are identified with
the standard CP -conserving values sH � pA = cot β mt/v
and pH = sA = 0 in the decoupling limit. The mass of
the light Higgs boson moves in this toy model from Mh =
215 GeV to 161 GeV to 74 GeV as the phase φ is varied from
0 through π/2 to π and, for φ = 0, the masses and widths
of the heavy states are MH2 = MH = 520 GeV, MH3 =
MA = 500 GeV, ΓH = 2.58 GeV and ΓA = 1.49 GeV.

For these parameters, the Argand diagram of the mixing
parameter X is presented in Fig. 1a in which the common
CP -violating phase φ evolves from 0 to π [for φ > π the
reflection symmetry �e/mX → +�e/−mX at φ =
π may be used]; Fig. 1b zooms in on the area of small
angles. Alternatively, the real and imaginary parts of X
are shown explicitly in Fig. 1c as functions of the common
CP -violating phase φ.

The difference of the squared masses M2
H − M2

A and
the real part of the mass mixing parameter ∆2

HA are ap-
proximately given by

M2
H − M2

A = (λ − λA)v2 ≈ λv2 cos φ,

�e(∆2
HA) = λpv

2 ≈ − 1
2

λ v2 sin φ, (35)

and the imaginary parts by

32π [MHΓH − MAΓA] ≈ ∆t + 9λ2v2 cos 2φ, (36)

32π m
(
∆2

HA

)
= 32π(MΓ )HA ≈ − 9

2
λ2v2 sin 2φ,

for the parameters specified above. Since the complex cou-
plings are parameterized by a phase, cosφ enters in the
real part of the couplings and thus affects the diagonal
elements of the mass matrix. The difference of the imag-
inary parts of the diagonal elements is determined by
the widths of the H/A decays to top quark pairs, ∆t =

4 Small off-resonance transitions of heavy Higgs bosons H
and A to the light Higgs boson h (and to the neutral would-be
Goldstone G0) can be neglected in the decoupling limit to a
good approximation.

5 With one common phase φ, the complex mixing parameter
X obeys the relation X(2π − φ) = X∗(φ), i.e. �e/�mX →
+�e/−�mX. As a result, all CP -even quantities are symmetric
and all CP -odd quantities anti-symmetric about π, i.e. when
switching from φ to 2π − φ. Therefore we can restrict the
discussion to the range 0 ≤ φ ≤ π.
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(b) Zoomed Argand
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 Re(X)
 Im(X)

(c) Mixing Parameter

π/2
 0π/4  3π/4

 0

π/4  3π/4

Fig. 1. a,b The Argand diagram and c the φ dependence of
the mixing parameter X in a toy model with the common CP -
violating phase φ evolving from 0 to π for tan β = 5, MA =
0.5 TeV and with all |λi| = 0.4 [ ≈ g2]; the upper right-hand
side zooms in on small angles. Note that �e/�mX(2π − φ) =
+�e/−�mX(φ)

−12M2
H/A(mt/v)2(1−β2

t )βt, modulated by sinusoidal vari-
ations from decays to hh. The modulus of the real part of
X rises more rapidly than the imaginary part; |X| reaches
unity for a phase ∼ π/3, and the maximum value of about
10 a little below φ = π/2 where H and A masses become
equal. The Argand diagram is described by a circle to a
high degree of accuracy; the center is located on the pos-
itive imaginary axis, and the radius of the circle is given
by ∼ λv2/4|MHΓH − MAΓA| ∼ 5 in the present scenario.
Note that the resonant behavior is very sharp as shown in
Fig. 1c what is also apparent from the swift move along the
circle in the Argand diagram. The φ dependence of X fol-
lows the typical absorptive/dispersive pattern of analytical
resonance amplitudes.

The shifts of masses and widths emerging from H and
A are displayed in Figs. 2a,b. The differences of masses
and widths of H and A without the CP -violating mixing
∆2

HA are shown by the dashed lines. As expected from
(35), the overall mass shift decreases monotonically with
varying φ from 0 to π while the width shift shows an ap-
proximate sinusoidal behavior. If φ ≈ π/2 the H–A mass
difference becomes so small that the mixing parameter X
can become very large ∼ i λv2/2 (MHΓH − MAΓA) ∼ 10 i
in the numerical example. Both CP -conserving quantities
are symmetric about φ = π. The impact of H/A mixing
on the character of ∆M , in particular, is quite significant.

4 A specific SUSY example

To illustrate these general quantum mechanical results in a
potentially more realistic example, we shall apply the for-
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(b) Width Shift

Fig. 2. a,b The dependence of the mass and width shifts,
∆M = MH2 − MH3 and ∆Γ = ΓH2 − ΓH3 , on the phase φ.
The dashed lines display these differences without mixing for
the H, A states. Both quantities are symmetric about φ = π

malism to a specific scenario within the minimal supersym-
metric standard model but extended by CP -violating ele-
ments [MSSM-CP]. We assume the source of CP -violation
to be localized in the complex trilinear coupling At of the
soft supersymmetry breaking part of the potential involv-
ing the top squark.6 All other interactions are assumed to
be CP -conserving.

Through stop-loop corrections CP -violation is trans-
mitted in this scenario to the effective Higgs potential.
Expressed in the general form (1), the effective λ param-
eters have been calculated in [3] to two-loop accuracy; to
illustrate the crucial points we recollect the compact one-
loop results of the t/t̃ contributions:

λ1 =
g2 + g′2

4
− h4

t

32π2

|µ|4
M4

S

,

λ2 =
g2 + g′2

4
+

3h4
t

8π2

[
log

M2
S

m2
t

+
1
2

Xt

]
,

λ3 =
g2 − g′2

4
+

h4
t

32π2

(
3|µ|2
M2

S

− |µ|2|At|2
M4

S

)
,

λ4 = − g2

2
+

h4
t

32π2

(
3|µ|2
M2

S

− |µ|2|At|2
M4

S

)
,

λ5 = − h4
t

32π2

µ2A2
t

M4
S

,

λ6 =
h4

t

32π2

|µ|2µAt

M4
S

,

λ7 = − h4
t

32π2

µ

MS

(
6At

MS
− |At|2At

M3
S

)
, (37)

where

ht =
√

2mt(mt)
v sin β

and Xt =
2|At|2
M2

S

(
1 − |At|2

12M2
S

)
. (38)

6 This assignment is compatible with the bounds on CP -
violating SUSY phases derived from experiments on electric
dipole moments [12].

Here, mt is the top quark pole mass related to the running
MS mass mt(mt) through mt(mt) = mt/

[
1 + 4

3π αs(mt)
]
,

and MS is the SUSY scale.
These λ parameters determine the effective potential

from which the one-loop improved Born Higgs mass ma-
trix is derived. By including dispersive contributions from
Higgs self-energies, the matrix elements are shifted to the
pole-mass parameters. In the decoupling limit for heavy
Higgs masses and very heavy masses of the supersymmetric
particles, top quark loops build up the self-energy contri-
butions. The shifts are individually small for scalar and
pseudoscalar Higgs masses in this limit. Moreover, since
the mixing parameter X is affected only by the mass dif-
ference, the shifts cancel in X asymptotically in the chi-
rally symmetric decoupling limit. For the set of parameters
chosen subsequently for illustration, these effects are very
small, O(100 MeV), and we will ignore them in the numer-
ical analysis.

Todemonstrate the complexH/Amixing in thisMSSM-
CP model numerically, we adopt a typical set of parameters
from [4,13],

MS = 0.5 TeV, |At| = 1.0 TeV, µ = 1.0 TeV;

tanβ = 5, (39)

while varying the phase φA of the trilinear parameter At.
In the CP -conserving case with φA = 0 we find the

following values of the light and heavy Higgs masses and
decay widths:

Mh = 129.6 GeV, MH = 500.3 GeV, MA = 500.0 GeV,

ΓH = 1.2 GeV, ΓA = 1.5 GeV, (40)

and the stop masses:

mt̃1
= 372 GeV, mt̃2

= 647 GeV. (41)

While the light Higgs boson mass is not altered if CP -
violation through the phase φA is turned on, the Argand
diagram and the variation of the CP -violating parame-
ter X are presented in Figs. 3a,b,c. [Symmetries in moving
from φA to 2π − φA are identical to the toy model.] The
mass and width shifts of the heavy neutral Higgs bosons
are displayed in Figs. 4a,b, respectively. Similar to the toy
model in the previous section, the two-state system in the
MSSM-CP shows a very sharp resonant CP -violating mix-
ing, purely imaginary a little above φA = 3π/4. The mass
shift is enhanced by more than an order of magnitude if
the CP -violating phase rises to non-zero values, reaching
a maximal value of ∼ 5.3 GeV; the width shift moves up
[non-uniformly] from −0.3 and +0.4 GeV. As a result, the
two mass eigenstates become clearly distinguishable, incor-
porating significant admixtures of CP -even and CP -odd
components mutually in the wave-functions.

5 Experimental signatures of CP -mixing

(i) A first interesting example for studying CP -violating
mixing effects is provided by γγ–Higgs formation in polar-
ized beams [14–16]:

γγ → Hi [i = 2, 3] . (42)



S.Y. Choi et al.: H/A Higgs mixing in CP -noninvariant supersymmetric theories 561

-10 -5 0 5 10
 Re(X)

-5

0

5

10

15
 I

m
(X

)
(a) Argand Diagram 

-1.0 0.0 1.0
 Re(X)

-1.0

0.0

1.0
(b) Zoomed Argand

0.0 0.2 0.4 0.6 0.8 1.0
φ

A
 [π]

-10

-5

0

5

10

15

 Re(X)
 Im(X)

 (c) Mixing Parameter

 0

3π/2

π/2 π/4

 0π/2

π/4

3π/4

Fig. 3. a,b The Argand diagram and c the φA dependence of the
mixing parameter X in a SUSY model with the CP -violating
phase φA evolving from 0 to π for tan β = 5, MA = 0.5 TeV and
couplings as specified in the text; the Argand diagram zoomed
in on small angles is displayed on the upper right-hand frame.
�e/�mX(2π − φA) = +�e/−�mX(φA) for angles above π

0.0 0.2 0.4 0.6 0.8 1.0
φ

A
[π]

-6

-3

0

3

6

∆M
 [

G
eV

]

(a) Mass Shift

0.0 0.2 0.4 0.6 0.8 1.0
φ

A
 [π]

-0.6

-0.3

0.0

0.3

0.6

 ∆
Γ 

[G
eV

]

(b) Width Shift

Fig. 4. a,b The dependence of the shifts of masses and widths
on the CP -violating angle φA in the SUSY model with the
same parameter set as in Fig. 3; the differences without mixing
are shown by the dashed lines

For a specific final state F of the Higgs boson decays, the
amplitude of the reaction γγ → Hi → F is a superposition
of H2 and H3 exchanges. For helicities λ = ±1 of the two
photons, the amplitude reads

MF
λ =

∑
i=2,3

〈F |Hi〉 Di(s) [Sγ
i (s) + iλP γ

i (s)] . (43)

The loop-induced γγHi amplitudes are described by the
scalar and pseudoscalar form factors, Sγ

i (s) and P γ
i (s)

where
√

s is the γγ energy and the Higgs Hi propaga-
tor reads Di(s) = 1/

(
s − M2

Hi
+ iMHi

ΓHi

)
in the Breit–

Wigner form. The scalar and pseudoscalar form factors
receive the dominant contributions from the top (s)quark
loops in the decoupling regime for moderate values of tanβ

[while bottom loops are suppressed by the Yukawa coupling
and the small electric b charge]. These form factors are re-
lated to the well-known conventional γγH/A form factors,
Sγ

H,A and P γ
H,A, by

Sγ
2 = cos θ Sγ

H + sin θ Sγ
A, Sγ

3 = − sin θ Sγ
H + cos θ Sγ

A,

P γ
2 = cos θ P γ

H + sin θ P γ
A, P γ

3 = − sin θ P γ
H + cos θ P γ

A .

(44)

For the explicit form of the loop functions Sγ
H,A and P γ

H,A

see, for example, [13]. To reduce technicalities, the Higgs–
tt couplings are assumed to be CP -conserving, implying
no top-loop contributions to P γ

H and Sγ
A. This simplifying

assumption is approximately realized in scenarios in which
the gluino mass is sufficiently heavy compared with the stop
masses [5]. The t̃1 loop, with non-vanishing At̃1t̃1 coupling,
may generate a CP-violating form factor Sγ

A. However, in
the region of strong mixing on which the present analysis
is focused, the CP-violating vertex corrections have only
a small effect on the experimental asymmetries compared
with the large impact of CP-violating Higgs–boson mixing.
[The assumption can easily be removed if general MSSM-
CP scenarios are analyzed beyond the present generic level.]
The relevant production rates for heavy SUSYHiggs bosons
have been calculated in [17].

For linearly polarized photons, the CP -even component
of the Hi wave-functions is projected out if the polarization
vectors are parallel, and the CP -odd component if they
are perpendicular. This effect can be observed in the CP -
even asymmetry

Alin =
σ‖ − σ⊥
σ‖ + σ⊥

(45)

of the total γγ fusion cross sections for linearly polarized
photons. Though not CP -violating sui generis, the asym-
metry Alin provides us with a powerful tool nevertheless to
probe CP -violating admixtures to the Higgs states since
|Alin| < 1 requires both Sγ

i and P γ
i non-zero couplings.

Moreover, CP -violation due to H/A mixing can directly
be probed via the CP -odd asymmetry7 constructed with
circular photon polarization as

Ahel =
σ++ − σ−−
σ++ + σ−−

. (46)

The upper panels of Fig. 5 show the φA dependence of
the asymmetries Alin and Ahel at the poles of H2 and of H3,
respectively, for the sameparameter set as inFig. 3 andwith
the common SUSY scale MQ̃3

= Mt̃R
= MS = 0.5 TeV for

the soft SUSY breaking top squark mass parameters.8 By
7 This asymmetry is also odd under CPT̃ where the naive

time reversal transformation T̃ [18] reverses the direction of
all 3-momenta and spins, but does not exchange initial and
final state. Quantities that are odd under CPT̃ can be non-
zero only for complex transition amplitudes with absorptive
phases which can be generated, for example, by loops, and
Breit–Wigner propagators.

8 On quite general grounds, the CP -conserving observables
are symmetric under the reflection about φA = π, while the
CP -violating observables are anti-symmetric.
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Fig. 5. The φA dependence of the CP -even and CP -odd corre-
lators, Alin (upper-left panel) and Ahel (upper-right panel), at
the poles of H2 and H3, respectively, and the γγ energy depen-
dence (lower panel) of the correlators, Alin,hel for φA = 3π/4 in
the production process γγ → Hi in the limit in which H/A mix-
ing is the dominant CP -violating effect. The same parameter
set as in Fig. 3 is employed. Numerically, MH2 = 502.5 GeV,
MH3 = 497.9 GeV, ΓH2 = 1.28 GeV and ΓH3 = 1.31 GeV.
The vertical lines on the lower panel represent the two mass
eigenvalues, MH3 and MH2

varying the γγ energy from below MH3 to above MH2 , the
asymmetries, Alin (blue solid line) and Ahel (red dashed
line), vary from −0.39 to 0.34 and from −0.29 to 0.59,
respectively, as demonstrated on the lower panel of Fig. 5
with φA = 3π/4, a phase value close to resonant CP -
mixing.

If the widths are neglected, the asymmetries Alin and
Ahel on top of the Hi [i = 2, 3] poles can approximately
be written in terms of the form factors:

Alin[Hi] ≈ |Sγ
i |2 − |P γ

i |2
|Sγ

i |2 + |P γ
i |2 , (47)

Ahel[Hi] ≈ 2 m
(
Sγ

i P γ∗
i

)
|Sγ

i |2 + |P γ
i |2 . (48)

These approximate formulae reproduce the numerical val-
ues very accurately. If one further neglects not only small
corrections due to such overlap phenomena but also correc-
tions due to non-asymptotic Higgs-mass values, the asym-
metries on top of the H2 and H3 poles can simply be
expressed by the complex mixing angle θ:

Alin[H2] � −Alin[H3] � | cos θ|2 − | sin θ|2
| cos θ|2 + | sin θ|2 , (49)

Ahel[H2] � +Ahel[H3] � 2 m (cos θ sin θ∗)
| cos θ|2 + | sin θ|2 . (50)

The asymmetries Alin are opposite in sign for the two Higgs
bosons H2 and H3, while the asymmetries Ahel have the
same sign. However, we note that the corrections due to
non-asymptotic Higgs masses are still quite significant for
the mass ratio MH2,H3/2mt ∼ 1.3 in our reference point,
particularly for Ahel which is sensitive to the interference
between the γγH and γγA form factors9.

Detailed experimental simulations would be needed to
estimate the accuracy with which the asymmetries can be
measured. However, the large magnitude and the rapid,
significant variation of the CP -even and CP -odd asym-
metries, Alin and Ahel, through the resonance region with
respect to both the phase φA and the γγ energy would be
a very interesting effect to observe in any case.

(ii) A second observable of interest for studying CP -vio-
lating mixing effects experimentally is the polarization of
the top quarks in Hi decays produced by γγ fusion [14,19]
or elsewhere in various production processes at an e+e−
linear collider and LHC:

Hi → tt̄ [i = 2, 3] . (51)

Even if the H/Att couplings are [approximately] CP -con-
serving, the complex rotation matrix C may mix the CP -
even H and CP -odd A states leading to the CP -violating
helicity amplitude of the decay process Hi → tt̄:

〈tσ t̄σ|Hi〉 =
∑

a=H,A

Cia(σβtsa − ipa), (52)

where the t and t̄ helicities σ/2 = ±1/2 must be equal and
sa, pa are the Htt and Att couplings defined in (19). The two
correlations between the transverse t and t̄ polarization vec-
tors s⊥, s̄⊥ in the production-decay process γγ → Hi → tt̄,

C‖ = 〈s⊥ · s̄⊥〉 and C⊥ = 〈p̂t · (s⊥ × s̄⊥)〉 (53)

lead to a non-trivial CP -even/CPT̃ -even azimuthal corre-
lation and a different CP -odd/CPT̃ -even azimuthal corre-
lation between the two decay planes t→bW+ and t̄→b̄W−:

1
Γ

dΓ

dφ∗ =
1
2π

[
1 − π2

16

(
1 − 2m2

W /m2
t

1 + 2m2
W /m2

t

)2

× (C‖ cos φ∗ + C⊥ sin φ∗) ] , (54)

where φ∗ denotes the azimuthal angle between two decay
planes [14]. In terms of the helicity amplitudes 〈σ, λ〉 for
the process γγ → Hi → tt̄, where λ = ±1 denotes the
helicities of both photons and σ = ±1 twice the helicities
of both top quarks, the asymmetries are given as

C‖ = − 2 �e
∑〈+, λ〉〈−, λ〉∗∑

(|〈+, λ〉|2 + |〈−, λ〉|2) , (55)

C⊥ = +
2 m

∑〈+, λ〉〈−, λ〉∗∑
(|〈+, λ〉|2 + |〈−, λ〉|2) , (56)

with the sums running over the two photon helicities.
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Fig. 6. The φA dependence of the CP -even and CP -odd corre-
lators, C‖ (upper-left panel) and C⊥ (upper-right panel), at the
pole of H2 and H3 and the invariant tt̄ energy dependence (lower
panel) of the correlators C‖,⊥ for φA = 3π/4 in the production–
decay chain γγ → Hi → tt̄. [Same SUSY parameter set as
in Fig. 5]

The upper panels of Fig. 6 show the φA dependence of
the CP -even and CP -odd asymmetries, C‖ and C⊥, at the
poles of H2 and of H3, respectively, for the same parameter
set as inFig. 5. If the invariant tt̄ energy is varied throughout
the resonance region, the correlators C‖ (blue solid line) and
C⊥ (red dashed line) vary characteristically from −0.43 to
−0.27 [non-uniformly] and from 0.84 to −0.94, respectively,
as shown on the lower panel of Fig. 6.

Similarly to the previous case, if the widths are ne-
glected, the C‖ and C⊥ asymmetries on top of the H2 and
H3 poles can approximately be expressed by the complex
mixing angle θ as

C‖[H2] � | cos θ|2β2
t − | sin θ|2

| cos θ|2β2
t + | sin θ|2 ,

C‖[H3] � − | cos θ|2 − | sin θ|2β2
t

| cos θ|2 + | sin θ|2β2
t

, (57)

C⊥[H2] � 2�e(cos θ sin θ∗)βt

| cos θ|2β2
t + | sin θ|2 ,

C⊥[H3] � − 2�e(cos θ sin θ∗)βt

| cos θ|2 + | sin θ|2β2
t

. (58)

These approximate formulae provide a nice qualitative un-
derstanding of the numerical values. In the asymptotic
kinematic limit βt → 1 of the top quark velocity, the cor-

9 We have checked that indeed the numerical values approach
formula (50) for very large Higgs masses.

relators reduce to the simple expressions:

C‖[H2] � −C‖[H3] � | cos θ|2 − | sin θ|2
| cos θ|2 + | sin θ|2 , (59)

C⊥[H2] � −C⊥[H3] � 2 �e(cos θ sin θ∗)
| cos θ|2 + | sin θ|2 , (60)

i.e. they are both opposite in sign. However, we note that
the square of the top quark velocity β2

t ≈ 0.5 near the Higgs
resonances so that the corrections due to non-asymptotic
Higgs masses are significant, in particular, for the asym-
metry C‖ in the present example.

Though not easy to observe, the gross effects, at least,
in Fig. 6 should certainly be accessible experimentally.

6 Conclusions

Exciting mixing effects can occur in the Higgs sector of 2-
Higgs doublet models, nota bene in supersymmetric mod-
els, if CP -noninvariant interactions are switched on. In
the decoupling regime these effects can become very large,
leading to interesting experimental consequences. We have
analyzed such scenarios in a general quantum mechanical
language that provides us with a clear and transparent un-
derstanding of the phenomena in the general two-doublet
model. Moreover, the effects are illustrated in the minimal
supersymmetric standard model extended by CP -violating
interactions [MSSM-CP]. Higgs formation in γγ collisions
proves particularly interesting for observing such effects.
However, exciting experimental effects are also predicted
in such scenarios for tt̄ final-state analyses in decays of the
heavy Higgs bosons at LHC and in the e+e− mode of linear
colliders.
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